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Abstract

In this paper, the focus is on distributed similar formation stabilization, which aims to design a distributed controller to stabilize
a group of agents to a desired formation, allowing for arbitrary translations, rotations, and scaling. While existing literature has
produced fruitful results in this area, current approaches often rely on restrictive conditions regarding the inter-agent interaction
graph. This paper introduces a novel approach using a clique-based control law, along with the concept of “edge-based clique
addition”, which offers a more lenient graphical condition compared to previous clique-based methods. By concentrating on a
single clique with the new controller, the paper establishes a necessary and sufficient condition for determining the clique shape
uniquely, a novel contribution to the field. Furthermore, the paper proposes the graph construction method “edge-based clique
addition”, which ensures that the multi-agent system achieves global similar formation stabilization. Similar to distance-based
formation control, the proposed controller only necessitates each agent to capture the relative positions from neighbors in its
local coordinate frame, without the need for coordinate system alignment or wireless communications. Finally, a simulation
example is provided to demonstrate the effectiveness of the proposed control strategy.
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1 Introduction

Formation control of multi-agent system has wide-
ranging applications in real-world scenarios, such as
joint composition, exploration and rescue missions [1–
3]. Achieving overall formation solely based on the local
state information of neighbors is a topic of widespread
interest. In the past studies, formation control meth-
ods based on different measurements have emerged
[4], mainly classified into the following categories:
displacement-based(relative position) [5–9], distance-
based [10–14], bearing-based [15–19] and angle-based
[20–22].

In displacement-based [6,7] and bearing-based [15–18]
approaches, it is necessary to align the coordinate sys-
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tems of each agent to ensure that the relative positions
understood by each agent are the same. One solution is to
achieve consensus on coordinate systems among agents
through frequent information exchange [7,16,23], which
is invalid in a communication-denied environment. On
the other hand, distance and angle measurements are in-
dependent of coordinate frames, therefore have been ex-
tensively studied in [10–14] and [24,20,21,25,22], respec-
tively. However, global convergence of formation control
based on angle measurements remains to be a challeng-
ing problem.

In this paper, we focus on formation stabilization based
on relative position measurements in individual local co-
ordinate frames, without the need for coordinate align-
ment and wireless communication between agents.

Global convergence of formation control via local dis-
placement measurements has been achieved through dif-
ferent approaches. In [26,27], the authors propose the
complex Laplacian matrix approach for formations with
leaders. In [28,29], the authors demonstrate the effective-
ness of the affine formation control approach in achiev-
ing global convergence to a similar formation. In [25,30],
global convergence for triangulated graphs is achieved by
using linear angle constraints and local relative position
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measurements in the absence of leaders. However, these
approaches are not applicable to more general graphs.

All the aforementioned formation approaches require
carefully designing the formation graph so that the con-
straints are consistent with the target formation shape
and the graphical condition can be satisfied. In fact, a
more flexible approach to encoding a formation shape
as a graph is using cliques [31–33]. Moreover, the clique-
based method is also based on purely relative position
measurements in local coordinate frames and is able to
provide global convergence. In [33], a clique-based ap-
proach is proposed to achieve global convergence of the
target formation up to rotations and translations. How-
ever, formation scaling is not allowed and the agents in
the intersection of two maxcliques 1 are required to not
belong to any other maxcliques. In [31,32], the authors
define the clique rigidity, and provide the relationship
between clique rigidity and formation degrees of free-
dom. However, global convergence of the control strat-
egy is only obtained for complete graphs. It is observed
that the global stabilization of similar formations under
more general graph structures is challenging.

To sum up, while fruitful results regarding formation
stabilization based on local relative position measure-
ments are reported in literature, none (to the authors’
best knowledge) is available without requiring restric-
tive conditions on the inter-agent interaction graph. In
this paper, we revisit the clique-based formation con-
trol problem and propose a relaxed sufficient graphical
condition for global stabilization of a similar formation.
By employing a gradient-like controller, which is similar
to [31–33], we provide analytic expressions for the time-
varying scaling and rotation factors. It is interestingly
found that under such a controller, the stabilization of
partial agents in a clique to a desired manifold is equiva-
lent to the stabilization of the whole clique to its desired
shape. The key principle is that the two constraints on
rotation and scaling parameters (αm = 0, km = 1) can
provide compensatory constraints on the equilibrium do-
main when two agents are not directly constrained. By
virtue of this fact, we propose the edge-based clique ad-
dition approach, which always induces a graph that ren-
ders global convergence of the formation system.

The main contributions of this paper can be summarized
as follows.

• We propose a clique-based distributed controller for
similar formation control, and provide explicit ana-
lytic expressions for the scaling and rotation factors
(Lemma 2), which induce higher degrees of freedom of
the formation, compared to [33]. We also prove that
our factor updating approach achieves the global min-

1 A maxclique is a clique that does not belong to any clique
with more vertices.

imum of the objective function given desired and ac-
tual formations.

• For a single clique, we establish a necessary and suf-
ficient condition for the unique determination of the
actual formation shape in the equilibrium domain
(Lemma 7). Based on this condition, we develop a
graph construction approach called edge-based clique
addition.

• Under the graph constructed by edge-based clique ad-
dition and the proposed control strategy, we show
global stabilization of the similar formation. Com-
pared to [31] and [33], the graphical condition for
global convergence is much milder. Moreover, the con-
vergent formation scale is guaranteed to be not larger
than its initial value.

The rest of this article is organized as follows. Section 2
gives notations and problem formulation. Section 3 in-
troduces the control strategy, and the relationship be-
tween control inputs in local coordinate frames and the
global coordinate frame. Section 4 analyzes the equilib-
rium domain of the control strategy and provides the
edge-based clique addition approach for graph construc-
tion. Section 5 presents the stability analysis of the con-
trol strategy under the graph constructed by edge-based
clique addition. Finally, section 6 provides the simula-
tion results.

2 Preliminaries and problem formulation

2.1 Notations

Referring to [34,35], we give a series of definitions used
in this paper. R+ represents the set of positive real num-
bers; Rn denotes the n dimensional Euclidean space; ∥·∥
is the Euclidean norm; X⊤ signifies the transpose of ma-
trix X; In stands for the n× n identity matrix; For two
matrices A and B, A⊗B represents the Kronecker prod-
uct of the matrices. ∇xf(x) denotes the gradient of the

function f(x) with respect to x; R(α) =

[
cosα − sinα

sinα cosα

]
is the rotation matrix with respect to rotation angle α ∈
(−π, π]; The superscript ⊥ indicates a counter-clockwise
rotation of a vector by π/2 in plane, i.e., p⊥ = R(π2 )p

for p ∈ R2; The function atan2(y, x) can be defined as
follows:

atan2(y, x) =


2 arctan( y√

x2+y2+x
) if x > 0,

2 arctan(

√
x2+y2−x

y ) if x ≤ 0 and y ̸= 0,

π if x < 0 and y = 0,

undefined if x = 0 and y = 0.

An undirected graph, represented by G = (V, E), con-
tains a vertex set V = {1, 2, ..., N} and an edge set
E = {(i, j) ∈ E : i, j ∈ V} with (i, j) = (j, i); The set
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of neighbors of vertex i is Ni = {j ∈ V : (i, j) ∈ E};
Throughout this paper, all the considered graphs are
undirected and time-invariant; Assigning a direction to
each edge in an undirected graph is referred to as an
orientation; The incident matrix can be represented by
H = [hij ], whose the rows and columns are indexed by
edges and vertices of G with an orientation. hij = 1 if
vertex j is the head of ith edge, hij = −1 if vertex j is the
tail of ith edge, and hij = 0 otherwise; A clique means a
complete subgraph of graph G, namely, any two vertices
are adjacent in the clique; A maxclique C is a clique that
does not belong to any clique with more vertices; Let
M (G) = {1, ..., m̄} be the set of all the maxcliques in G;
The r-intersection graph of maxcliques of G is denoted
by Υr(G) = (M (G) , Êr), where each edge (i, j) ∈ Êr im-
plies that maxcliques i and j have at least r vertices in
common in G. It can be observed that Υr(G) becomes
sparser as r increases, i.e., Êr ⊆ Êr−1 for r ≥ 2. We show
the 2-intersection graph of maxcliques of G in Fig.1.
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Fig. 1. The example of 2-intersection graph of maxcliques
in G. (a) A formation graph G with 15 vertices and 7 max-
cliques, which is also the desired formation of simulations. (b)
the 2-intersection graph Υ2 (G) = (M (G) , Ê). The vertices
denote maxcliques and edges imply connected maxcliques
have at least two common intersection.

2.2 Problem Formulation

Consider a group of N mobile agents in the plane with
p = [p⊤1 , p

⊤
2 , ..., p

⊤
N ]⊤ ∈ R2N , pi = [pxi , p

y
i ]

⊤ ∈ R2 is the
position of agent i ∈ V = {1, ..., N}. Each agent has a
single-integrator dynamics:

ṗi = ui, i ∈ V , (1)

where ui ∈ R2 is the velocity input of agent i. In this pa-
per, we will derive the control strategy based on gradient
descent. It has been known that such controllers are ap-
plicable to not only single-integrator dynamics, but also
more general dynamic systems, see [36].

Denote pij as the position of agent j in the local coor-
dinate frame of agent i. Each agent i can measure rel-
ative position from its neighbors in graph G, i.e., Mi =
{pij − pii, j ∈ Ni}, here Ni is the neighbor set of agent i

in G. Note that the relative position information is mea-
sured by the onboard sensor of each agent, instead of
communication (inter-agent information exchange).

The ultimate goal of the similar formation con-
trol problem considered in this paper is to drive
the group of agents to stabilize a desired forma-
tion shape regardless of trivial motions including
uniform translation, rotation, and scaling. Similar
to [20,22], we use a framework (G, p∗) (where G
is connected) to characterize the desired formation
shape, where p∗ = [(p∗1)

⊤, (p∗2)
⊤, ..., (p∗N )⊤]⊤ ∈ R2N ,

p∗i = [(p∗i )
x, (p∗i )

y]⊤ ∈ R2 is one realization of the target
formation.

Problem 1: Given a configuration p∗ forming the target
formation shape, design a controller ui based on Mi for
each agent i ∈ V , such that the stacked position states of
agents, i.e., p, driven by (1), converges to a configuration
of the following desired equilibrium set asymptotically:

S = {q ∈ R2N : q = k(IN ⊗R)p∗ + 1N ⊗ ξ,

k ∈ R+, R ∈ SO(2), ξ ∈ R2}. (2)

The above-mentioned problem has been widely stud-
ied in literature via different approaches, e.g., distance-
based [37,10], affine formation control [29,28], complex
Laplacian [26], clique-based[33,32], angle-based [20,25].
Although [10,33] and [25] have all obtained global con-
vergence, they often require restrictive graphical condi-
tions. In this paper, we revisit Problem 1 and adopt the
clique-based approach. Different from [33], we introduce
a scaling parameter to achieve formation stabilization
with higher degrees of freedom. Moreover, we will show
that a graph constructed by edge-based clique addition
suffices to ensure global convergence of our controller,
which is a relaxed graphical condition.

3 Clique-Based Formation Control

In order to achieve distributed formation control, we
encode the formation information through a set of inter-
agent relative position vectors M∗ = {p∗j − p∗i , i, j ∈
V}, which is time-invariant and computed based on the
target formation. Then the desired equilibrium set E can
be transformed to

S = {q ∈ R2N : qij = kR(α)p∗ij , ∀ i, j ∈ V ,
k ∈ R+, R(α) ∈ SO(2)}, (3)

where qij and p∗ij are shorthands for qj − qi and p∗j − p∗i ,
respectively.

It is natural to see that p ∈ S if and only if there exist
k ∈ R+ and R ∈ SO(2) such that the following cost
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equals zero:

γ =
∑
i∈V

∑
j∈V

∥∥pij − kR(α)p∗ij
∥∥2 , (4)

where pij = pj − pi.

Directly designing the formation controller via the gra-
dient of γ will require each agent to know the global co-
ordinate frame information [7]. To address this issue, we
adopt a clique-based method to achieve formation con-
trol. The underlying philosophy of a clique-based for-
mation control approach is driving each maxclique to
stabilize a desired pattern (which is a part of the de-
sired formation) while coordinating different cliques via
intersection agents. For any maxclique m ∈ M(G), we
construct a cost function as follows:

γm =
1

4

∑
i∈Im

∑
j∈Im

∥∥pij − kmRm(αm)p∗ij
∥∥2 , (5)

where Im denotes the set of agents in the maxclique m,
km is a non-negative scaling parameter, and Rm(αm)
is the rotation matrix associated with angle αm. In the
rest of the paper, we will use Rm as the shorthand of
Rm(αm) for symbol simplicity.

Compared with [33], adding a scaling parameter into the
cost function of each maxclique induces an extra degree
of freedom, i.e., formation scaling. With the introduc-
tion of the scaling parameter, the nonlinearity of the
cost function increases, and the global stability analysis
method in [33] becomes invalid. It can be observed that
γm = 0 if and only if the actual clique m achieves the
desired equilibrium.

Then we construct a new overall cost function as follows:

γ̂ =
∑

m∈M(G)

γm. (6)

The newly designed overall cost function γ̂ captures all
the edges in G by encompassing all maxcliques. Then,
we define the set of configurations that satisfy γ̂ = 0 as
follows:

E{γ̂=0} = {p ∈ R2N : γ̂ = 0, km ∈ R+,

Rm(αm) ∈ SO(2),m ∈ M(G)}. (7)

To ensure that E{γ̂=0} is able to describe the desired
formation shape, we make the following assumption:

Assumption 1 The 2-intersection graph Υ2 (G) is con-
nected.

The following lemma shows the equivalence between S
and E{γ̂=0} under Assumption 1.

Lemma 1 S = E{γ̂=0} if and only if Assumption 1
holds.

Proof. According to the definitions of S and E{γ̂=0},
we obtain S ⊆ E{γ̂=0} directly. Therefore, it suffices
to show that E{γ̂=0} ⊆ S if and only if Assumption 1
holds. Next we prove sufficiency and necessity respec-
tively.

Sufficiency. Consider an arbitrary configuration p ∈
E{γ̂=0}. Since Υ2 (G) is connected, without loss
of generality, we can find two distinct maxcliques
m1 and m2 such that they have at least two ver-
tices i and j in common. Since γ̂ = 0, we have
pij = km1Rm1p

∗
ij = km2Rm2p

∗
ij , implying that

Rm1
= Rm2

, km1
= km2

. Recall that Υ2 (G) is con-
nected, the equality can be trivially propagated through-
out |M (G) | maxcliques, implying that there exist k
and R such that km = k and Rm = R, ∀m ∈ M (G),
i.e., p ∈ S .

Necessity. Assume Assumption 1 does not hold, then
there are multiple connected components in Υ2(G), and
each pair of them have at most one vertex in common.
According to the definitions of γ̂ and γm, any two max-
cliques m1 and m2 can have different km and Rm while
ensuring γm1 = γm2 = 0 if they have at most one ver-
tex in common. Therefore, E{γ̂=0} ⊈ S since E{γ̂=0}

contains configurations having different km and Rm for
maxcliques in different connected components in Υ2(G),
which is a contradiction. The proof is completed. ■

Lemma 1 implies that the clique-wise cost function (5)
has to be utilized on the premise of Assumption 1. There-
fore, the formation control method proposed in this work
always requires the validity of Assumption 1.

3.1 Control Strategy in the Global Frame

We aim to design a gradient descent control strategy for
optimizing γ̂. To this end, we compute its gradient as
follows:

∇pi
γ̂ =

∑
m∈M(G)

∇pi
γm (8)

=
∑

m∈M(G)

(
∂γm
∂αm

∂αm

∂pi
+

∂γm
∂km

∂km
∂pi

+
∂γm
∂pi

)
,

where the scaling parameter km and rotation parameter
αm are viewed as functions of p.

Given p, p∗ ∈ R2N , next we design αm and km such that

(i) the following equation holds:

∂γm
∂αm

=
∂γm
∂km

= 0, (9)
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where αm ∈ (−π, π] and km > 0;

(ii) the maxclique cost γm reaches its global minimum.

To ensure that αm and km satisfy (i) and (ii) , we make
the following assumption:

Assumption 2 Denote∆′
m =

∑
i∈Im

∑
j∈Im

p⊤ij(p
∗
ij)

⊥,
∆m =

∑
i∈Im

∑
i∈Im

p⊤ijp
∗
ij and set D = {∆′

m = ∆m =

0}. We assume p /∈ D during the formation process.

Note that the set D is of measure zero, which implies
that given a randomly generated configuration p, the
probability of p ∈ D is zero. Therefore, Assumption 2
is not restrictive, similar assumptions have been made
in [31–33]. The following lemma gives the expressions of
αm and km under Assumption 2.

Lemma 2 Given fixed p, p∗ ∈ R2N , the following state-
ments hold.

(i). Equation (9) holds if and only if

αm = atan2 (∆′
m,∆m) , (10)

and

km =

∑
i∈Im

∑
j∈Im

p⊤ijRmp∗ij∑
i∈Im

∑
j∈Im

(p∗ij)
⊤p∗ij

, (11)

(ii). The maxclique cost γm reaches its global minimum if
and only if αm and km satisfy (10) and (11), respectively.

Proof. (i). Restricting αm to the region (−π, π] and solv-
ing ∂γm/∂αm = 0, we yield two possible solutions for
αm:

α′
m = atan2 (∆′

m,∆m) , α′′
m = atan2 (−∆′

m,−∆m) .
(12)

Similarly, solving ∂γm/∂km = 0 gives a unique solution
for km:

km =

∑
i∈Im

∑
j∈Im

p⊤ijRmp∗ij∑
i∈Im

∑
j∈Im

(p∗ij)
⊤p∗ij

, (13)

where∑
i∈Im

∑
j∈Im

p⊤ijRmp∗ij = ∆m cosαm+∆′
m sinαm. (14)

According to (12), when αm = α′
m, we have cos am =

∆m√
(∆′

m)2+∆2
m

and sin am =
∆′

m√
(∆′

m)2+∆2
m

, implying that

km > 0. When αm = α′′
m, we have cos am = −∆m√

(∆′
m)2+∆2

m

and sin am =
−∆′

m√
(∆′

m)2+∆2
m

, implying km < 0. We con-
clude that (9) is valid if and only if (10) and (11) hold,
since km is constrained to be positive in (9).

(ii). Sufficiency. We prove the global optimality of γm by
reduction to absurdity since it is complicated to obtain
its Hessian matrix. Assume that there exists another pair
(R′

m, k′m) ̸= (Rm, km) globally minimizing γm. Next, we
discuss the following three cases.

Case 1. Rm ̸= R′
m, km = k′m. According to (14), αm in

(10) results in

∂γ2
m

∂α2
m

=
km
2

(∆m cosαm +∆′
m sinαm) > 0. (15)

Thus αm in (10) minimizes γm, which is a contradiction.

Case 2. Rm = R′
m, km ̸= k′m. Similar to Case 1, we have

∂γ2
m

∂k2m
=

1

2

∑
i∈Im

∑
j∈Im

∥p∗ij∥2 > 0, (16)

implying that km in (11) minimizes γm, which is a con-
tradiction.

Case 3. Rm ̸= R′
m, km ̸= k′m. According to (10) and (11),

the value of Rm is independent of km, thus we can se-
lect a new pair of parameter combination (Rm, k′m). We
can have the value of γm(Rm, k′m) less than γm(R′

m, k′m)
based on case 2 and γm(Rm, km) less than γm(Rm, k′m)
based on case 1, i.e., γm(Rm, km) < γm(Rm, k′m) <
γm(R′

m, k′m). A contradiction arises.

In conclusion, γm obtains the global minimum if Rm and
km satisfy (10) and (11), respectively.

Necessity. According to the necessary condition for sta-
tionary points of bivariate functions, the pair (Rm, km)
satisfying (10) and (11) is the unique solution globally
minimizing γm. ■

Recall the expression of∇pi γ̂ in (8), based on ∂γm/∂αm =
0 and ∂γm/∂km = 0, we have

∇pi
γm =

∂γm
∂pi

= −
∑
j∈Im

(
pij − kmRmp∗ij

)
≜ −uim ,

(17)

where uim denotes the partial control input of agent i
corresponding to maxclique m.
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Then we can obtain the gradient descent controller of
each agent i:

ui =
∑
m∈Ci

uim =
∑
m∈Ci

∑
j∈Im

(
pij − kmRm(αm)p∗ij

) ,

(18)

whereCi is the set of all the maxcliques containing vertex
i, km and Rm(αm) are obtained by (10) and (11).

One can observe from the expression of ui in (18) that
each agent i only requires the information of M∗

i =
{p∗j−p∗i , j ∈ Ni} ⊆ M∗, which can be provided at the be-
ginning of the formation process. During the formation
process, each agent is not required to update M∗

i based
on sensing or interactions with other agents. Moreover,
the individual controller is distributed since it involves
only relative information from neighbors. In Subsection
3.3, we will further show that the relative information
that each agent requires can be computed in local coor-
dinate frames.

3.2 Properties of the Control Law

We next examine some useful properties of the control
law. Define the centroid and scale of the formation as

p̄ ≜ 1

N

N∑
i=1

pi, s ≜
1

N

N∑
i=1

∥pi − p̄∥2 , (19)

respectively. We denote p(0) as initial position of each
agent and s(0) as the initial scale with respect to p(0).
The following lemma shows the properties of p̄, p and s.

Lemma 3 Under the controller (18), the following state-
ments hold for any t ≥ 0.

(i). The formation centroid p̄ is invariant.

(ii). The positions of agents satisfy ∥p∥ ≤ ∥p(0)∥.

(iii). s ≤ s(0).

Proof. (i). Similar to [24], the invariance of the formation
centroid p̄ can be proved based on the symmetry of the
graph.

(ii). The derivative of 1
2∥p∥

2 can be expressed as follows:

N∑
i=1

p⊤i ṗi =
∑

m∈M(G)

∑
i∈Im

p⊤i ∑
j∈Im

(pij − kmRmp∗ij)

 .

(20)

Note that

p⊤i (pij − kmRmp∗ij) + p⊤j (pji − kmRmp∗ji)

= −∥pij∥2 + kmp⊤ijRmp∗ij . (21)

Then, equation (20) can be rewritten as

N∑
i=1

p⊤i ṗi =
1

2

∑
m∈M(G)

∑
i∈Im

∑
j∈Im

(−∥pij∥2 + kmp⊤ijRmp∗ij)

(22)

=
1

2

∑
m∈M(G)

(
−A+

(
∑

i∈Im

∑
j∈Im

p⊤ijRmp∗ij)
2

B

)

≤ 1

2

∑
m∈M(G)

(
−A+

C

B

)
≤ 0,

where
A =

∑
i∈Im

∑
j∈Im

∥pij∥2 ,

B =
∑
i∈Im

∑
j∈Im

∥∥p∗ij∥∥2 ,
C = (

∑
i∈Im

∑
j∈Im

∥pij∥
∥∥p∗ij∥∥)2,

and the inequality C ≤ A · B can be obtained by the
formula (2.3.4) in [38]. Therefore, the derivative of 1

2∥p∥
2

is non-positive, implying ∥p∥ ≤ ∥p(0)∥.

(iii). We obtain the definitive of s as follows:

ṡ =
2 ·
∑N

i=1(pi − p̄)⊤ṗi
N

. (23)

According to (i), (22) and

N∑
i=1

ṗi =

N∑
i=1

ui = 0,

we have ṡ ≤ 0, implying s ≤ s(0). ■

The following lemma establishes the relationship be-
tween the controllers before and after rigid motions of
the formation.

Lemma 4 If the actual formation is transformed with
uniform translations, rotations and scaling, i.e., p′ij =

KR(θ)pij , ∀i, j ∈ V, K ∈ R+ and θ ∈ (−π, π], the new
control input u′

i of each agent i satisfies

u′
i = KR(θ)ui. (24)
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Proof. Without loss of generality, consider any maxclique
m,m ∈ M (G), we can derive the new cost function of
maxclique m as

γ′
m =

1

4

∑
i∈Im

∑
j∈Im

∥∥p′ij − k′mR′
mp∗ij

∥∥2 (25)

=
K2

4

∑
i∈Im

∑
j∈Im

∥∥∥∥pij − k′m
K

R(θ)
−1

R′
mp∗ij

∥∥∥∥2 ,
where k′m and R′

m are the new scaling and rotation fac-
tors to be designed.

Consider (5) and (25), (km, Rm) and (k′m/K,R−1(θ)R′
m)

minimize γm and γ′
m, respectively. We can derive that

k′
m

K R−1(θ)R′
m = kmRm, since there exists a unique so-

lution that minimizes
∑

i∈Im

∑
j∈Im

∥∥pij − kRp∗ij
∥∥2,

according to the necessity proof of (ii) of Lemma 2.
Thus we have k′m = Kkm, R′

m = R(θ)Rm and obtain
the relationship between ui and u′

i as follows:

u′
i =

∑
m∈Ci

∑
j∈Im

(
p′ij − k′mR′

mp∗ij
)

=
∑
m∈Ci

∑
j∈Im

(
KR(θ)pij −KkmR(θ)Rmp∗ij

)
= KR(θ)ui. (26)

The proof is completed. ■

3.3 Computation of the Control Inputs in the Local
Frames

Next we will show the control input of each agent in its
local coordinate frame, and the relationship between the
control inputs obtained in the global coordinate frame
and these obtained in local coordinate frames.

Define θi as the rotation angle between the local coor-
dinate frame of each agent i and the global coordinate
frame, where θi is unknown to each agent i. We use the
superscript i to mark the quantities in the local coor-
dinate system of agent i, therefore piij = R(θi)pij . Ac-
cording to (5), the expression of the local cost function
of agent i with respect to maxclique m is

γi
m =

1

4

∑
i∈Im

∑
j∈Im

∥∥piij − kimRi
mp∗ij

∥∥2 . (27)

According to (5) and (27), agent i optimizes γm and γi
m

separately through (Rm, km) and (Ri
m, kim).

Similar to (18), the local control input of each agent is

as follows:

ui
i =

∑
m∈Ci

[ ∑
k∈Im

(
piik − kimRi

m(αi
m)p∗ik

)]
, (28)

where the expressions of αi
m and kim are in (10) and

(11), respectively, based on relative positions in local
coordinate frames. According to Lemma 4, it holds that
kim = km, Ri

m = R(θi)Rm and

ui
i = R(θi)ui, (29)

since piij = R(θi)pij , ∀i, j ∈ Im. The relationship be-
tween ui

i and ui characterizes the fact that agent i op-
timizes both γi

m and γm simultaneously. Thus we will
analyze our controller in the global coordinate frame in
the rest of the paper.

Based on the above analysis, we have the following result
directly.

Lemma 5 For any two vertices a and b in the maxclique
m, Ra

m and Rb
m satisfy (R(θa))

−1Ra
m = (R(θb))

−1Rb
m.

4 Equilibrium Analysis and Edge-Based Clique
Addition

In this section, we will establish the relationship between
the equilibrium set and the target formation shape. A
formation graph construction approach will be proposed
under which the equilibrium always corresponds to the
target formation shape.

4.1 Equilibrium Analysis for Maxcliques

Denote

E{ui=0} = {p ∈ R2N : ui = 0, i ∈ V} (30)

as the equilibrium set of the MAS with controller ui de-
fined in (18), we aim to find out the relationship between
E{ui=0} and S . We first consider the case when graph
G is completed, i.e., it only has one maxclique, which is
itself. In this case, the following lemma shows that any
equilibrium configuration always corresponds to the de-
sired formation shape.

Lemma 6 E{ui=0} = S if G is complete.

Proof. Firstly, we prove that E{ui=0} ⊆ S . Suppose
p ∈ E{ui=0}. According to (18), for any two vertices
l1, l2 ∈ V , we have∑

j∈V
(pl1j − kRp∗l1j) = 0,

∑
j∈V

(pl2j − kRp∗l2j) = 0. (31)
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Subtracting the two equations, we have pl1l2 = kRp∗l1l2 .
Therefore, p ∈ S .

Next, we prove that S ⊆ E{ui=0}. Consider the ex-
pression of S in (3), it is observed

∥∥pij − kRp∗ij
∥∥2 =

0, ∀i, j ∈ V under complete graph. Therefore, we can
derive ui =

∑
j∈V

(
pij − kRp∗ij

)
= 0, i ∈ V . The proof is

completed. ■

Remark 1 Lemma 6 implies that given a maxclique m,
{uim = 0, i ∈ Im} always corresponds to the desired
formation for this maxclique. However, for a general
graph consisting of multiple maxcliques, there always ex-
ist agents in the intersection of different maxcliques,
whose equilibrium is more complicated to analyze. For
example, let i be an agent lying in maxcliques m1, ...,ms.
Then the equilibrium of agent i becomes {

∑s
j=1 uimj

=

0}, which may not lead to {uim1
= · · · = uims

= 0}.

For the sake of discussion, we define the agents lying in
only one maxclique as independent agents. In fact, if the
number of independent agents of a maxclique is suffi-
ciently large, the equilibrium of this maxclique remains
to fit the target formation. To show this, we consider
any maxclique m with |Im| ≥ 3, and let I0 (I0 ⊆ Im)
be the set of independent agents in this maxclique.

Denote

Em = {p ∈ R2|Im| : uim = 0,

km ∈ R+, Rm(αm) ∈ SO(2), i ∈ Im} (32)

and

Em0 = {p ∈ R2|Im| : uim = 0,

km ∈ R+, Rm(αm) ∈ SO(2), i ∈ I0}. (33)

The following lemma gives a necessary and sufficient
condition on |I0| for ensuring Em = Em0.

Lemma 7 Em = Em0 if and only if |I0| ≥ |Im| − 2.

Proof. Without loss of generality, we focus on the case
km = 1 and Rm = I2. By the virtue of Lemma 4, the
results can be extended to the case for ∀km ∈ R+ and
∀Rm(αm) ∈ SO(2).

It is observed that Em ⊆ Em0 since I0 ⊆ Im. Therefore,
it suffices to show that Em0 ⊆ Em if and only if |I0| ≥
|Im| − 2.

Before we enter into the main proof, we first analyze
what kind of constraints on the configuration p that the
set Em0 offers.

According to the expressions of km and Rm in (10) and
(11), respectively, we have∑

i∈Im

∑
j∈Im

p⊤ij(p
∗
ij)

⊥ = 0, (34)∑
i∈Im

∑
j∈Im

p⊤ijp
∗
ij =

∑
i∈Im

∑
j∈Im

(p∗ij)
⊤p∗ij . (35)

For ease of presentation, we define pIm = [p⊤1 , ..., p
⊤
|Im|]

⊤ ∈
R2|Im| and p∗Im

= [(p∗1)
⊤, ..., (p∗|Im|)

⊤]⊤ ∈ R2|Im|. Con-
sider (34), we have∑
i∈Im

∑
j∈Im

p⊤ij(p
∗
ij)

⊥ (36)

= 2 · [Hm ⊗ I2 · pIm
]⊤ · I |Im|(|Im|−1)

2

⊗W ·Hm ⊗ I2 · p∗Im

= 2 · p⊤Im
H⊤

mHm ⊗W · p∗Im

= 2 · p⊤Im
Lm ⊗W · p∗Im

= 2(p∗Im
)⊤Lm ⊗W · pIm = 0,

whereHm ∈ R
|Im|(|Im|−1)

2 ×|Im| andLm ∈ R|Im|×|Im| are
the incidence matrix and Laplacian matrix, respectively,
associated with the maxclique m, and W = R(π2 ) · I2.

Meanwhile, we can obtain∑
i∈Im

∑
j∈Im

(p∗ij)
⊤(p∗ij)

⊥ = 2(p∗Im
)⊤Lm ⊗W · p∗Im

= 0.

(37)

Subtract (37) from (36), yielding

2(p∗Im
)⊤Lm ⊗W · pIm − 2(p∗Im

)⊤Lm ⊗W · p∗Im
(38)

= 2(p∗Im
)⊤Lm ⊗W · qIm

= 0,

where qIm
= pIm

− p∗Im
. Then consider (35), we have∑

i∈Im

∑
j∈Im

p⊤ijp
∗
ij −

∑
i∈Im

∑
j∈Im

(p∗ij)
⊤p∗ij (39)

=2 · [Hm ⊗ I2 · pIm
]⊤ ·Hm ⊗ I2 · p∗Im

−
2 · [Hm ⊗ I2 · p∗Im

]⊤ ·Hm ⊗ I2 · p∗Im

=2q⊤ImLm ⊗ I2 · p∗Im
= 2(p∗Im

)⊤Lm ⊗ I2 · qIm
= 0.

When km = 1 and Rm = I2, examine Em0 results in

uim =
∑
k∈Im

(pik − p∗ik) = 0, i ∈ I0. (40)

On the other hand, assume

uim =
∑
k∈Im

(pik − p∗ik) = [x′
i, x

′′
i ]

⊤, i ∈ Im\I0.
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Thus, we can obtain the following system of linear equa-
tions with respect to qIm :

−Lm ⊗ I2 · qIm
= [

2·|Im\I0|︷ ︸︸ ︷
x′
1, x

′′
1 , ..., x

′
i, x

′′
i ,

2·|I0|︷ ︸︸ ︷
0, ..., 0]⊤. (41)

Using A · qIm = B as the shorthand for the above
system of linear equations. It is observed that for any
B with |I0| ≥ 1, there always holds that rank(A) =
rank(A,B) = 2 · |Im| − 2 because the first |Im| − 1 rows
of Lm are always linearly independent.

It is worth noting that
∑

i∈Im
uim = 0 by Lemma 3,

which leads to∑
i∈Im\I0

x′
i = 0,

∑
i∈Im\I0

x′′
i = 0. (42)

Then, substitute (41) in (38), we have

[

2·|Im\I0|︷ ︸︸ ︷
(p∗1)

′, (p∗1)
′′, ..., (p∗i )

′, (p∗i )
′′] · [

2·|Im\I0|︷ ︸︸ ︷
x′′
1 ,−x′

1, ..., x
′′
i ,−x′

i]
⊤

= 0, i ∈ Im\I0. (43)

Substitute (41) in (39), we have

[

2·|Im\I0|︷ ︸︸ ︷
(p∗1)

′, (p∗1)
′′, ..., (p∗i )

′, (p∗i )
′′] · [

2·|Im\I0|︷ ︸︸ ︷
x′
1, x

′′
1 , ..., x

′
i, x

′′
i ]

⊤

= 0, i ∈ Im\I0. (44)

In conclusion, Em0 can be viewed as the set of p that
satisfies equations (41), (42), (43), and (44).

Next we prove sufficiency and necessity, successively.

Sufficiency: When |I0| = |Im| − 2, the set Im\I0 con-
tains two vertices. According to (42), we have

x′
1 = −x′

2, x
′′
1 = −x′′

2 . (45)

Thus, combine (43), (44) and (45), we have the following
system of equations{

((p∗1)
′ − (p∗2)

′)x′
1 + ((p∗1)

′′ − (p∗2)
′′)x′′

1 = 0,

((p∗2)
′′ − (p∗1)

′′)x′
1 + ((p∗1)

′ − (p∗2)
′)x′′

1 = 0.
(46)

Since any two vertices do not coincide in the target for-
mation, i.e., [(p∗1)′, (p∗1)′′]⊤ ̸= [(p∗2)

′, (p∗2)
′′]⊤, the coeffi-

cient matrix of the linear equation always has a nonzero
determinant. Therefore, x′

1 = x′′
1 = x′

2 = x′′
2 = 0, which

follows that Em0 ⊆ Em.

Necessity: Assume |I0| < |Im|−2, we consider the case
of |I0| = |Im|−3. The set Im\I0 contains three vertices.

Similarly, according to (42), we have

x′
3 = −x′

1 − x′
2, x

′′
3 = −x′′

1 − x′′
2 . (47)

Combine (43), (44) and (47), we have the following sys-
tem of equations A ·X = 0, where

A = (48)[
(p∗1)

′ − (p∗3)
′, (p∗1)

′′ − (p∗3)
′′, (p∗2)

′ − (p∗3)
′, (p∗2)

′′ − (p∗3)
′′

(p∗3)
′′ − (p∗1)

′′, (p∗1)
′ − (p∗3)

′, (p∗3)
′′ − (p∗2)

′′, (p∗2)
′ − (p∗3)

′

]
,

and X = [x′
1, x

′′
1 , x

′
2, x

′′
2 ]

⊤. We can obtain rank(A) = 2,
since any two vertices do not coincide. The system of
equations has infinitely many solutions. Thus Em0 ⊈
Em, which is a contradiction. The proof is completed. ■

Lemma 7 implies that the states of |Im| − 2 agents are
sufficient to fix the shape of the whole clique under con-
troller (17). Therefore, similar to [20], one can control
the orientation and scale of the whole clique by only con-
trolling two agents in I0 when |I0| ≥ |Im| − 2.

Next we provide an example to illustrate the necessity
of Lemma 7 more clearly.

Example 1 In this example, consider a maxclique con-
taining four vertices, i.e., |Im| = 4. Fig. 2 shows the de-
sired framework (G, p∗) and actual framework (G, p) with
the configuration p = [0, 0, 1.25, 0, 0.75, 0.75, 0, 1.25]⊤

and p∗ = [0, 0, 1, 0, 1, 1, 0, 1]⊤, respectively. We can
obtain the control input of each agent by (18): u1 =
[0, 0]⊤, u2 = [−0.25, 0]⊤, u3 = [0.25, 0.25]⊤, u4 =
[0,−0.25]⊤, which indicates I0 = {1} and |I0| < |Im|−2.
From Fig. 2, we observe that Em0 ⊈ Em.

1* 2*

3*4*

(a)

1 2

3

4

(b)

Fig. 2. The example of Lemma 7. (a) The desired formation.
(b) The actual formation. The red arrows represent the di-
rections of control inputs given the desired formation and
the actual formation, where the control input of first agent
is zero.

Lemma 7 shows that if the number of independent agents
of maxclique m satisfies |I0| ≥ |Im| − 2, we have uim =
0, i ∈ Im\I0. Based on this idea, together with Assump-
tion 1, Lemma 1 and Lemma 6, it always holds that

p ∈ E{ui=0} ⇒ uim = 0,m ∈ M(G), i ∈ Im ⇒ p ∈ S ,
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1K

1K

1K
1K

2K

2K

2K

3K

a

a

a

a

b

b

b

b

c

4K

3K
c

Fig. 3. An example of graph GC . Starting with the initial
clique K1 = (V1, E1), we add the new clique K2 = (Vc

2 , Ec
2),

such that |V1 ∩ Vc
2 | = 2 and |E1 ∩ Ec

2 | = 1. Similarly, we
add cliques K3 and K4 successively through edges (a, c) and
(a, b), respectively, satisfying |V2 ∩ Vc

3 | = 2, |E2 ∩ Ec
3 | = 1,

|V3 ∩ Vc
4 | = 2 and |E3 ∩ Ec

4 | = 1.

if the structure of graph G satisfies a specific condition.

To analyze the equilibrium of the overall formation sys-
tem, we next introduce a class of graphs that can help
establish a connection between clique-wise equilibrium
and the overall formation system equilibrium.

4.2 Edge-Based Clique Addition

The following definition gives a specific approach of con-
structing a desired graph topology.

Definition 1 (Edge-Based Clique Addition) A graph G
is constructed by edge-based clique addition if it is an el-
ement of any sequence of graphs {G (n)}n≥1 obtained as
follows: Start with a clique G(1) = (V1, E1) with |V1| ≥ 3,
the graph G (n) is obtained by combining G(n − 1) =
(Vn−1, En−1) with another clique Cn = (Vc

n, Ec
n) with

|Vc
n| ≥ 3, i.e., Gn = (Vn∪Vc

n, En∪Ec
n), such that |Vn−1∩

Vc
n| = 2, |En−1 ∩ Ec

n| = 1.

In the rest of the paper, we denote GC as the graph in-
cluded by edge-based clique addition for symbol simplic-
ity. Fig. 3 shows an example of the construction of GC .
In fact, the GC has three important properties as follows.

• The 2-intersection graph of GC , i.e., Υ2(GC), is a tree.
• An edge may exist in arbitrary number of maxcliques

in GC .
• Graph GC is generically rigid 2 .

Note that Definition 1 only constrains the graph topol-
ogy G, and is independent of the geometric shape. More-
over, the above graph properties are necessary but not
sufficient for Definition 1. To better understand Defini-
tion 1, we show three counterexamples in Fig. 4.

2 Rigidity refers to the property that the shape of a frame-
work (G, p) can be locally determined by inter-node distance
constraints. A graph G is generically rigid if (G, p) is rigid
for almost all configuration p ∈ R2N . For more details about
rigidity and generic rigidity, please refer to [39,40].

1K

2K

3K

4K

5K

(a)

1K

2K

3K

4K

(b)

1K

2K 3K

4K

(c)

Fig. 4. Three graphs that are not graph GC . (a),
|Vn−1 ∩ Vc

n| = 3, |En−1 ∩ Ec
n| = 1. (b), |Vn−1 ∩ Vc

n| = 3,
|En−1 ∩ Ec

n| = 2. (c), |Vn−1 ∩ Vc
n| = 2, |En−1 ∩ Ec

n| = 0.

Remark 2 We would like to give the following remarks
regarding the proposed “edge-based clique addition”
method:

• Our condition on graph GC is more relaxed compared to
the graph condition in [33], as the latter needs to ensure
that the common edge of two maxcliques exclusively
belong to these two maxcliques.

• The rigidity property can be verified by applying suc-
cessive edge-attachment operations defined in [41].

• The triangulated Laman graph, defined in [42], is a
special case of graphs constructed by edge-based clique
addition.

• Although graph GC is constructed by a sequence of
clique addition, the individual formation controllers
(28) are implemented simultaneously.

4.3 Equilibrium Analysis for the Formation System

Recall the definition of E{ui=0} defined in (30), which
is the equilibrium of the formation system. In Remark
1, we claimed that E{ui=0} may not correspond to the
desired formation for the whole formation, the following
lemma shows that we can establish the equivalence of
E{ui=0} and S provided the graph satisfies Definition 1.

Lemma 8 E{ui=0} = S under the graph constructed
by edge-based clique addition, i,e, GC .

Proof. Define E{uim=0} = {p ∈ R2N : uim = 0, km ∈
R+, Rm(αm) ∈ SO(2),m ∈ M(G), i ∈ Im}, which cor-
responds to the configuration under which each max-
clique achieves its desired formation. Next we will prove
that

E{ui=0} = E{uim=0} = E{γ̂=0} = S

under the graph GC .

Firstly, it is observed that E{uim=0} = E{γ̂=0} accord-
ing to Remark 1 and the expression of γ̂ in (6). Then,
based on the first property of GC and Lemma 1, we have
E{γ̂=0} = S .

Next, we prove that E{ui=0} = E{uim=0}. According
to the definitions of E{ui=0} and E{uim=0}, we obtain
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E{uim=0} ⊆ E{ui=0} directly. Therefore, it suffices to
show E{ui=0} ⊆ E{uim=0} under graph GC .

Consider a graph GC consisting of m̄ maxcliques, we
sequentially label the m̄ maxcliques by 1, 2, ..., m̄ based
on the construction order of graph GC . According to the
definition of graph GC , for any maxclique i, it shares only
one common edge with maxclique j labeled less than i.

Next we will prove that uim = 0,m ∈ M(G), i ∈ Im by
the principle of mathematical induction.

For maxclique m̄ of graph G, it has only one common
edge with other maxcliques, implying uim̄ = 0, i ∈ Im̄
by Lemma 7.

We assume maxclique n, n ∈ {2, .., m̄} satisfies uin̄ =
0, i ∈ In. Then, consider maxclique n− 1, it shares one
common edge (a, b) with maxcliques labeled less than
n − 1. We can have uin−1

= 0, i ∈ In−1\ {a, b} re-
gardless of whether maxclique n − 1 has intersections
with maxcliques labeled greater than n − 1. Therefore,
uin−1 = 0, i ∈ In−1 according to Lemma 7.

By the principle of mathematical induction, we can ob-
tain uim = 0,m ∈ M(G) for any i ∈ Im, implying
E{ui=0} ⊆ E{uim=0}. The proof is completed. ■

Lemma 8 implies that once the graph satisfies Definition
1, the equilibrium of the overall formation system always
corresponds to the desired formation shape. Hence, now
we can go ahead to provide the stability analysis for the
formation equilibrium.

5 Stability Analysis

The following theorem shows the global stability of the
desired formation shape via controller (18) and edge-
based clique addition.

Theorem 1 The multi-agent system (1) under the con-
trol input (18) globally converges to the desired equilib-
rium set, if the formation graph is constructed by edge-
based clique addition.

Proof. Define a Lyapunov candidate function as

V = γ̂ =
∑

m∈M(Gc)

γm

=
∑

m∈M(Gc)

∑
i∈Im

∑
j∈Im

∥∥pij − kmRmp∗ij
∥∥2 ≥ 0. (49)

The derivation of the Lyapunov function for the single-
integrator is obtained as follows:

V̇ =
∑
i∈V

(∇pi
V )

⊤
ṗi = −

∑
i∈V

u⊤
i ṗi

=−
∑
i∈V

∥ui∥2 ≤ 0. (50)

According to Lemma 3, it holds that ∥p∥ ≤ ∥p(0)∥
for all t ≥ 0. Therefore, we can find a compact set
Ω = {p|∥p∥ ≤ ∥p(0)∥}. Invoking LaSalle’s invariance
principle [43], the system converges asymptotically to
the largest invariant E{ui=0}. Recall Lemma 8, we have
E{ui=0} = S . The proof is completed. ■

Theorem 1 establishes the global asymptotic conver-
gence by using LaSalle’s invariance principle, which is
similar to [32,33]. The main novelty of Theorem 1 is that
the graphical condition for the convergence of similar
formation is further relaxed as “edge-based clique addi-
tion”, by virtue of Lemma 8.

6 Simulations
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Fig. 5. The simulation results of the control strategy in [33].
(a) The desired framework (G, p∗). (b) The convergence pro-
cess of the actual formation. The blue hollow circles and
the blue solid circles represent the initial positions and con-
verged positions, respectively. Each solid gray line illustrates
the motion trajectory of each agent. (c) The convergence of
the rotation angle αm of each maxclique in the global coor-
dinate frame. (d) The evolution of the cost function γ̂.

To verify the performance of our proposed similar for-
mation controller via Edge-Based Clique Addition, we
conduct comparative experiments with relevant works.
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Fig. 6. The simulation results of our proposed control strat-
egy. (a) The desired framework (G, p∗). (b) The convergence
process of the actual formation. (c) The convergence of ro-
tation angle αm of each maxclique in the global coordinate
frame. (d) The convergence of scale parameter km of each
maxclique. (e) The evolution of the scale s. (f) The evolu-
tion of the cost function γ̂.

In [31,32], the authors proved the global convergence of
similar formation under a complete graph. In [33], forma-
tion rotation and translation are achieved based on con-
straints between cliques. Since the condition in the lat-
ter is milder than the former, we only compare with [33]
to show that our controller requires fewer sensing links
when facing the same formation stabilization mission.
Moreover, the stabilized formation via our controller is
able to have a different scale against the prescribed tar-
get formation.

In the comparative simulations, we aim to form
a rectangular-shaped formation using eight agents
with p∗ = [(p∗1)

⊤, (p∗2)
⊤, ..., (p∗N )⊤]⊤ ∈ R2N , p∗1 =

[−3,−1]⊤, p∗2 = [−1,−1]⊤, p∗3 = [1,−1]⊤, p∗4 =
[3,−1]⊤, p∗5 = [3, 1]⊤, p∗6 = [1, 1]⊤, p∗7 = [−1, 1]⊤, p∗8 =
[−3, 1]⊤. Each agent i can measure the relative positions
of its neighbors in Ni.

According to the graph construction method provided
by [33, Lemma 1], we can construct the topology shown
in Fig. 5a that the blue solid circles and the red solid lines

represent vertices and edges, respectively. This topol-
ogy contains 3 maxcliques and 16 edges. However, based
on the Edge-Based Clique Addition proposed in our pa-
per, we can construct a more relaxed topology struc-
ture shown in Fig. 6a, which contains contains 6 max-
cliques and 13 edges. The experimental results based on
the above different topology structure with their corre-
sponding control strategies are shown as follows.

Both methods use the same random initial positions.
Fig. 5b illustrates the convergence process of the actual
formation under the control strategy and graph struc-
ture in [33]. Fig. 6b shows the convergence process of the
actual formation under our proposed control strategy
and graph structure, where the multi-agents converge to
the desired formation shape up to rotation, translation
and scaling. It is observed that compared to [33], our con-
troller renders not only a relaxed graph structure, but
also an extra degree of freedom, i.e., formation scaling.

Fig. 6c and Fig. 6d show the evolution of rotations and
scaling factors of different maxcliques in the global co-
ordinate frame, respectively. For convenience of illustra-
tion, according to Lemma 5, we only focus on the ro-
tation of each maxclique rather than each agent. It is
observed that all the rotations and scaling factors con-
verge to a common value asymptotically, respectively.
Fig. 6e depicts the variation of the formation scale s,
which is non-increasing, as stated in Lemma 3. Fig. 6f
illustrates that the global cost γ̂ decreases as time goes
by and converges to zero when the desired formation is
achieved. Note that although we did not obtain an ana-
lytical expression for the formation convergence rate, it
is observed from Fig. 6f that exponential convergence is
achieved.

7 Conclusion

In this article, we have presented a distributed similar
formation control method based on cliques. The underly-
ing philosophy of the control strategy is to coordinate the
rotation matrices and scaling factors of different max-
cliques based on the common edges between maxcliques,
thereby achieving the overall translation, rotation, and
scaling of the formation. We proposed a necessary and
sufficient condition for a clique to determine its forma-
tion shape when only partial agents are constrained.
Based on this condition, we provided a novel graph con-
struction approach termed as “edge-based clique addi-
tion”. We proved that the multi-agent system under our
controller globally converges to the desired equilibrium
set if the formation graph is constructed by edge-based
clique addition. The proposed approach offers a promis-
ing advancement in the field of distributed formation
control with practical implications for multi-agent sys-
tems. In future, we will explore more relaxed graphical
conditions for similar formation control based on local
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relative position measurements. In addition, we will try
to extend the present work to higher-dimensional spaces.
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